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Observing non-Hermiticity induced chirality
breaking in a synthetic Hall ladder
Rui Ye1, Yanyan He1✉, Guangzhen Li 1, Luojia Wang1, Xiaoxiong Wu1, Xin Qiao1, Yuanlin Zheng 1, Liang Jin2,
Da-Wei Wang 3, Luqi Yuan 1✉ and Xianfeng Chen 1,4,5✉

Abstract
Non-Hermitian topological photonics plays a key role in bridging topological matter with gain and loss engineering in
optics. Here we report the experimental observation of the break of chiral currents in a Hall ladder from the
non-Hermiticity by constructing synthetic frequency dimension in two rings, where currents on both legs of the ladder
co-propagate in the same direction. The origin of such phenomena is resulted from the interplay between the
effective magnetic flux and the on-site gain and loss. Such non-Hermitian co-propagating currents exhibit
characteristics of unidirectional frequency conversion in both rings, and moreover, different from the counterpart in
Hermitian systems, can provide a method to probe the signatures of the non-Hermitian skin effect from steady-state
bulk dynamics. Our model is further extended to models including next-nearest-neighbor couplings, pointing to a way
for observing the non-Hermitian signature with higher winding number, and provides a new control knob for light
manipulation with the topological dissipation engineering.

Introduction
Chiral currents at opposite boundaries of two-

dimensional (2D) topological materials are featured by
robust one-way transport but in opposite directions1–7.
Recently, it was found that the broken chirality in a
topological system leads to anomalous topological phe-
nomena with the so-called antichiral currents8–17, where
edge currents at two boundaries co-propagate in the same
direction. This counterintuitive phenomenon comple-
ments chiral currents, bringing a new control knob to
functional wave guiding18. However, such chiral sym-
metry breaking in edge currents has only been experi-
mentally demonstrated in Hermitian microwave
systems19–22, which holds difficulty in extending to the
optical frequency regime.
On the other hand, it has been recently noticed that the

construction of photonic models with the synthetic

dimensions may provide a versatile way in studying many
topological and non-Hermitian physics due to its unique
capacity for introducing effective gauge potentials and
performing gain-loss engineering23–25. Besides using
degrees of freedom of light such as modes7, time26, and
orbital angular momentum27 to form synthetic dimen-
sions, the construction of the discrete lattice Hamiltonian
using the frequency axis of light28–35 has been successful
in studying various physics including chiral currents36 in
the quantum Hall ladder and measuring topological
windings37. In these experiments, fiber-based rings under
dynamic modulation have been used to simulate different
physical phenomena, with great flexibility in light
manipulation and potential scalability to the on-chip
applications. It is therefore of fundamental curiosity to
seek the realization of antichiral currents using synthetic
frequency dimension.
In this work, we unveil a different physical origin of broken

chirality38 in the non-Hermitian platform and report the
experimental demonstration in the optical regime. This is
achieved by using synthetic frequency dimension in two
rings, where a non-Hermitian Hall ladder is constructed with
different losses and hopping phases on the two legs. The
advantages in controlling the light from non-Hermiticity39–48
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and the effective gauge potential for photons4,36 are com-
bined, so currents on both legs co-propagate in the same
direction and then exhibit unidirectional frequency conver-
sion in both rings. Fundamentally different from microwave
Hermitian antichiral currents18–20, the observed non-
Hermitian co-propagating currents can exhibit intrinsic sig-
natures of the non-Hermitian skin effect38,49–66 from steady-
state bulk dynamics without obtaining the Lyapunov expo-
nent67,68, which is verified by measuring nontrivial topolo-
gical windings of band structures in the complex energy
plane in our experiments69–73. The universality of this
strategy is verified by extending the model to the Hall ladder
lattice including next-nearest-neighbor (NNN) couplings.
Our results hence realize optical antichiral currents from
non-Hermitian topology in a two-leg ladder model,
demonstrating the unidirectional frequency conversion in
the telecommunications band and providing a protocol that
can be generalized to other electromagnetic wavelengths.

Results
Theoretical analysis
We study a non-Hermitian two-leg Hall ladder model

described by the Hamiltonian

H ¼
X
n

iγ aynan � bynbn
� �þ κ

X
n

aynbn þ bynan
� �

þ
X
n

ve�iϕ=2aynanþ1 þ veiϕ=2bynbnþ1

� �
þ h:c:

h i ð1Þ

where aynðbynÞ and anðbnÞ are creating and annihilation
operators of n-th lattice site in legs a and b, respectively. κ
is the coupling strength between two sites on each leg,
and v describes the nearest-neighbor hopping strength
between two sites on each leg. The difference between
hopping phases on two legs gives the effective magnetic
flux ϕ for photons. There are on-site gain (iγ) and loss
(-iγ) on the leg a and b, respectively. If the lattice is
infinite, the corresponding Bloch Hamiltonian in the
momentum space is

Hk ¼
iγ þ 2v cosðk � ϕ

2Þ κ

κ �iγ þ 2v cosðk þ ϕ
2Þ

" #

ð2Þ
where k 2 0; 2πð � is the Bloch wave number. The
corresponding band structure is

E1;2ðkÞ ¼ 2v cos k cos
ϕ

2
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v sin k sin

ϕ

2
þ iγ

� �2

þ κ2

s

ð3Þ

and corresponding eigenstates ψ1;2 ¼ ψa
1;2;ψ

b
1;2

� �
with

ψa
1;2 and ψb

1;2 being the components on the legs a and b,
respectively.

When the on-site gain/loss are absent ðγ ¼ 0Þ, the two-
leg Hall ladder is Hermitian and can exist chiral currents,
i.e., the edge states on either leg (a or b) propagate in
opposite directions, for the nonzero magnetic flux (ϕ≠0 or
π) (see the top panel in Fig. 1a), which manifests the chiral
edge states of a 2D quantum Hall insulator even if the
entire bulk lattices are removed5,36,74. For the case of zero
magnetic flux ðϕ ¼ 0Þ, the chiral currents are absent (see
the middle panel in Fig. 1a) no matter if there exists on-
site gain/loss. However, when the magnetic flux and on-
site gain/loss both exist (ϕ≠ 0 or π, γ ≠ 0Þ, the currents on
two legs co-propagate in the same direction (see the down
panel in Fig. 1a), resulting in the so-called antichiral
currents in this model. It has also been noted that such
antichiral currents can drive the bulk eigenstates to
localize near the boundaries of the lattice under open
boundary conditions, which leads to the non-Hermitian
skin effect associated to the phenomena of the energy
localization of all bulk modes on the lattice boundary70.
We can characterize the skin effect by the winding
number, originating from the point-gap topology of band
structures71

w ¼
X
i¼1;2

Z 2π

0

dk
2π

∂karg½EiðkÞ � ε� ð4Þ

where ε is a reference energy in the complex energy plane.
The nonzero winding number (w≠0) indicates the
existence of the skin effect, and the sign of w determines
the direction of the skin effect69–73. The skin effect is
absent when the winding number is zero (w ¼ 0). In
Fig. 1b, d, we present the corresponding energy spectra
with the periodic boundary condition and open boundary
condition in the complex energy plane for different
effective magnetic flux ϕ and nonzero gain/loss
(γ ¼ 0:01), where the values of w are given inside each
loop. Distributions of all the eigenstates are shown in Fig.
1c, e, where two eigenstates of ReðEÞ ¼ ± 0:2 (blue stars
and red diamonds in Fig. 1b, d) are highlighted in blue and
red lines. The energy spectra under the periodic boundary
condition form two closed loops, one of which has
w ¼ 1ð�1Þ for ReðEÞ> 0½ReðEÞ< 0�, indicating the corre-
sponding eigenstates Ψð Þ localized on the left (right) side
of the lattice for the nonzero magnetic flux of ϕ ¼ 0:5π
(see Fig. 1c). This is the so-called bipolar non-Hermitian
skin effect55,56, where eigenstates can localize on both
sides of the lattice depending on the eigenenergies and has
only been demonstrated in acoustic systems56. However,
the energy spectra under both boundary conditions
overlap for zero effective magnetic flux (ϕ ¼ 0), and thus
the winding number is zero (w ¼ 0), indicating the
absence of the skin effect (see Fig. 1d, e). Thus, the skin
effect can be controlled by the effective magnetic flux in
the non-Hermitian two-leg Hall ladder.
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In such a model, the underlying skin effect originates
from the interplay between the effective magnetic flux
and on-site gain/loss. In Fig. 2a, d, we plot band
structures for effective magnetic flux ϕ ¼ 0:5π and ϕ ¼
0 with the asymmetry ratio S, defined as S ¼ ðjψaj2 �
jψbj2Þ=ðjψaj2 þ jψbj2Þ. S ¼ 1ð�1Þ means the eigenstates
mainly locate on the leg aðbÞ. When ϕ ¼ 0:5π, we can
see the eigenstates on the two legs a and b have the
opposite dispersion for a specific eigenenergy, which
are the chiral currents as signatures from the Hermi-
tian topology. For example, for the eigenenergy with
ReðEÞ ¼ �0:2, the current on the leg aðbÞ propagates
along þx̂ð�x̂Þ axis, due to the positive (negative) dis-
persion. However, the phenomenon of the chiral cur-
rents may disappear once the on-site gain/loss is
added. On the leg a with gain (iγ), the current along þx̂
axis does not change its direction, as it experiences
gain and gets increased. However, the original current
on the leg b along the �x̂ axis gradually decays to zero
due to the loss; meanwhile, the increasing current on
the leg a leaks into the leg b via the coupling between
two legs. As a result, the interplay between these two
trends changes the current direction on the leg b and
makes it co-propagate along þx̂ direction, which are
denoted as the antichiral currents in this two-leg
model.

We can quantitively describe the antichiral currents
using the current definition on each leg74

JaðbÞðEÞ ¼
X
i¼1;2

Z
dkδðEi � EÞjhψijaðbÞij2

∂Re½EiðkÞ�
∂k

ð5Þ
where ∂Re½EiðkÞ�=∂k represents the group velocity, and
δðEi � EÞ is the Dirac delta function which characterizes
the density of states. Considering the lifetime of the states,
we can express the density of states asZ

dkδðEi � EÞ ¼
X
k

1
π

Im½EiðkÞ�
fEiðkÞ � Re½EiðkÞ�g2 þ fIm½EiðkÞ�g2

ð6Þ
where Im½EiðkÞ� is the imaginary part of the eigenenergy
which indicates the lifetime of the eigenstates. From
Eqs. (5) and (6), we see the sign of the current on each leg
[JaðbÞ� is determined by the group velocity ∂Re Ei kð Þ½ �=∂k,
projection of eigenstates on the leg aðbÞ, jψijaðbÞj2, and
the sign of Im½EiðkÞ�. If JaðbÞðEÞ> 0, the current on the
leg aðbÞ propagates along þx̂ direction. In contrast, if
JaðbÞðEÞ< 0, the current propagates along �x̂ direction.
The antichiral currents can be demonstrated if the
currents on each leg propagate in the same direction,
i.e., JaðEÞ; JbðEÞ> 0ð< 0Þ.
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Fig. 1 Chiral currents and antichiral currents with corresponding non-Hermitian skin effect. a The comparison of chiral currents, no chiral
currents, and antichiral currents in a two-leg ladder model. The red and blue arrows denote the currents on the leg a and b, respectively. b, d Energy
spectra under the periodic boundary condition (colored lines) and open boundary condition (black dots) for lattices with ϕ ¼ 0:5π (b) and ϕ ¼ 0 (d),
wherein the red diamonds and blue stars denote the eigenenergies with ReðEÞ ¼ ± 0:2. The numbers in the figures indicate the value of w in
different loops. The inserted figures show the zoom-in energy spectra in the dashed boxes. c, e All the eigenstates of the lattices under the open
boundary condition with ϕ ¼ 0:5π (c) and ϕ ¼ 0 (e). The red and blue lines highlight the eigenstates of ReðEÞ ¼ ± 0:2, i.e., the red diamonds and
blue stars in (b) and (d). Other parameters are κ ¼ 0:15; v ¼ 0:1, and γ ¼ 0:01
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To confirm the existence of antichiral currents and
the correspondence between the antichiral currents and
the skin effect, we further plot distributions of the
eigenstates for all eigenenergies under the open
boundary condition for different effective magnetic flux
ϕ and nonzero gain/loss (γ ¼ 0:01). The correspon-
dence between the currents Ja; Jb (antichiral currents)
and the eigenstate distributions can be noticed by
comparing Fig. 2b, e and Fig. 2c, f. When the magnetic
flux is 0:5π, one can see JaðEÞ ¼ JbðEÞ< 0ð> 0Þ for
ReðEÞ> 0½ReðEÞ< 0�, thus showing the direction of
antichiral currents is along �x̂ðþx̂Þ for the upper (lower)
band (see Fig. 2b). The antichiral currents are consistent
with the skin effect, i.e., the eigenstates localize at the
left (right) boundary of the lattice for Ja; Jb < 0ðJa; Jb > 0Þ
(see Fig. 2c). The boundary of the localized states agrees
well with the direction of JaðbÞ for each eigenenergy. The
antichiral currents emerge once the gain/loss is added
(details are in Supplementary Note 1). We note that
the boundary where the distribution of the eigenstate
is localized is dependent on the real value of eigen-
energy E, i.e., the localization is at left (right) for
Re ðEÞ> 0½Re ðEÞ< 0�. Such phenomena correspond to
the bipolar non-Hermitian skin effect that we discussed
in Fig. 1c. Moreover, for zero magnetic flux ðϕ ¼ 0Þ, we
notice there is no existence of antichiral currents
½JaðEÞ ¼ JbðEÞ ¼ 0� (see Fig. 2e). The skin effect also
disappears in this case, as shown in Fig. 2f. The cases of
other phases are discussed in Supplementary Note 2.

Experimental demonstrations
The schematic configuration of the experimental

setup is illustrated in Fig. 3a (see detailed experimental
setup in Fig. 6 of Materials and methods). Two fiber
ring resonators A and B at the same length of L ¼11.6
m are coupled by a 2 ´ 2 fiber coupler with a coupling
ratio of 60 : 40. In the absence of group velocity dis-
persion, each ring resonator supports a series of
resonant frequencies ωa

n ¼ ωb
n ¼ ωn ¼ ω0 þ nΩ. Here

ω0 is a reference resonant frequency, Ω ¼ 2πvg=L ¼
2π � 17:6MHz is the free spectral range (FSR) with vg
being the group velocity, n ¼ 0; ± 1; ± 2,… is the index
of resonant frequency modes. Frequency modes in two
rings at same frequency are coupled due to the fiber
coupler with the coupling strength K . Different reso-
nant frequency modes in each leg are coupled by the
two electro-optic phase modulators (EOM1 and
EOM2), with the phase modulation form WAðtÞ ¼
g cosðΩt þ ϕaÞ and WBðtÞ ¼ g cosðΩt þ ϕbÞ, respec-
tively. Here g is the modulation amplitude, ϕa;ϕb are
the modulation phases. In this architecture, resonant
frequency modes ωa

n and ωb
n represent the lattice sites

an and bn, and therefore a synthetic two-leg Hall lad-
der is constructed, with the effective magnetic flux ϕ ¼
ϕb � ϕa in each plaquette (see Fig. 3b). In experiments,
we can construct a passive non-Hermitian Hall ladder
with different losses applied on two rings, (i.e., fre-
quency modes on two legs). The resulting Hamiltonian
of the non-Hermitian synthetic lattice in kf -space is
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Fig. 2 Correspondence between antichiral currents and the non-Hermitian skin effect. a, d Theoretical band structures. The color shows the
asymmetry ratio S. b, e Calculated currents Ja and Jb for different eigenenergies. c, f Distributions of all the eigenstates under the open boundary
condition. a–c With effective magnetic flux (ϕ ¼ 0:5π). d–f Without effective magnetic flux (ϕ ¼ 0). Other parameters are the same as those used in
Fig. 1
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(refer to Supplementary Note 3)

Hkf ¼
�iγa þ g cosðkfΩþ ϕaÞ K

K �iγb þ g cosðkfΩþ ϕbÞ
	 


ð7Þ

Here kf is the wave vector that is reciprocal to the
frequency dimension, and thus it acts as the time vari-
able23. As one round-trip time is equivalent to one
Brillouin zone, the quasimomentum can be defined by
k ¼ kfΩ

37. γa and γb are the dissipations of the legs a
and b, respectively. In experiments, we tune the dis-
sipation of leg b to achieve γb > γa by an additional
electro-optic amplitude modulator without modulation
in ring B, thus making this two-leg Hall ladder has on-
site pseudo-gain and loss by taking γa ¼ �γ þ γ and
γb ¼ γ þ γ with γ ¼ ðγa þ γbÞ=2 being the global loss.

Thus, this synthetic lattice is equivalent to the theore-
tical model in Eq. (2) except that the global loss γ. Since
the non-Hermitian topological properties are not
affected by the global loss42, our experimental config-
uration can be used to observe the antichiral currents
discussed above.
To measure the currents in the frequency dimension,

we inject a tunable continuous-wave laser from the
input fiber of ring A (sAin) to excite one mode ωa

0 (i.e., the
0-th site on the leg a) with a frequency detuning Δω in
the frequency dimension (see Fig. 3b). The currents on
the legs a and b are governed by the Ja and Jb in Eq. (5),
and finally reach the steady-state limit with the dis-
sipation, which can be characterized by the steady-state
mode distributions PaðnÞ and PbðnÞ on the legs a and b,
respectively. Nonzero currents in the two legs will
result in asymmetric mode distributions about the
central mode ω0 on each leg in the steady-state limit.

b
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Fig. 3 Experimental configuration and measurement of the antichiral currents. a Two identical coupled fiber ring resonators (A, B) are
modulated by two electro-optic phase modulators (EOM1, EOM2). The black arrows denote the input and drop-port fibers for inject and readout
light. b The synthetic two-leg Hall ladder in the frequency space of the two coupled ring resonators. The black arrow represents the initial excitation
of the input laser. c Experimentally measured steady-state normalized mode distributions PaðnÞ and PbðnÞ for ϕ ¼ 0:5π. The strong signal on the
excited mode n ¼ 0 has been removed. The top panels denote that the Pa and Pb are measured from the drop-port output fields of ring A and B,
respectively. d Measured steady-state normalized mode distributions PaðnÞ and PbðnÞ for the frequency detuning of Δω ¼ �0:12Ω with ϕ ¼ 0:5π,
i.e., the white dashed lines in (c). The red and blue arrows in the figure denote the directions of currents on each leg. The top panel denotes the
schematic of positive antichiral currents for this frequency detuning. e Measured steady-state chiral currents ja; jb for ϕ ¼ 0:5π. f Measured projected
band structures for ϕ ¼ 0:5π. g, h Measured ja; jb and projected band structures for ϕ ¼ 0. a.u. represents arbitrary units. Other experimental
parameters correspond to K ¼ 0:1Ω; g ¼ 0:1Ω; γ ¼ 0:04Ω, and γ ¼ 0:1Ω
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To quantify the currents, we, therefore, define the
steady-state currents as36

jaðbÞ ¼
X
n>0

PaðbÞðnÞ �
X
n<0

PaðbÞðnÞ ð8Þ

The nonzero current [jaðbÞ ≠ 0] reflects asymmetric mode
distributions referring to the central mode ω0 on each leg
caused by unidirectional currents in the frequency dimen-
sion36, and antichiral currents (co-propagating currents on
two legs) can be demonstrated if the signs of steady-state
currents on each leg are same, i.e., ja; jb > 0ðja; jb < 0Þ,
meaning the antichiral currents in the þx̂ (�x̂) direction. In
experiments, we can obtain the steady-state mode dis-
tributions PaðnÞ and PbðnÞ by using the heterodyne
detection method36. Specifically, we shift the frequency of
the input laser by δω ¼ 2π � 200MHz by an acousto-optic
modulator and interfere it with the drop-port output fields
of two rings (sAout, s

B
out) respectively to obtain the interfering

fields (see Fig. 6 in “Materials and methods” for details). The
mode distributions PaðnÞ and PbðnÞ then can be obtained
by a fast Fourier transform of the interfering fields,
respectively. We scan the frequency of the input laser
through the whole band structure to obtain PaðnÞ and
PbðnÞ corresponding to energies of all bands. Figure 3c
shows PaðnÞ and PbðnÞ for the non-zero effective magnetic
flux of ϕ ¼ 0:5π. We can see PaðnÞ and PbðnÞ are both
biased to n< 0ðn> 0Þ for the input frequency detuning
Δω> 0ðΔω< 0Þ, indicating the antichiral currents along
�x̂ðþx̂Þ or lower- (higher-) frequency regime. An example
mode distributions near Δω ¼ �0:12Ω are shown in Fig.
3d. One can see the distributions of steady-state modes on
both rings give larger occupation in the higher frequency
regime, indicating the positive antichiral currents. In Fig. 3e,
we then plot the corresponding currents on the two legs (ja
and jb) from Fig. 3c based on Eq. (8), where we observe
positive antichiral currents ðja; jb > 0Þ for the lower band
ðΔω<0Þ and negative antichiral currents ðja; jb<0Þ for the
upper band ðΔω> 0Þ, corresponding to the unidirectional
frequency conversion in both rings, which are the hallmark
of the antichiral currents in the synthetic non-Hermitian
Hall ladder lattice. Such unidirectional frequency conver-
sion can be robust against disorders (detailed discussion can
be found in Supplementary Note 5), different from con-
ventional conversion mechanisms75,76. As the currents are
indirectly measured based on this passive system, the
measured ja; jb are not exactly the same as the theoretical
analysis in Fig. 2 (see Supplementary Note 4 for explana-
tions). Note the amplitude of ja is larger than that of jb,
which is due to the initial excitation on the leg a. The signs
of ja and jb, however, are the same, which is the evidence of
the antichiral currents. The existence of antichiral currents
gives the key signature of the skin effect (see previous
explanations in Fig. 2), resulting from the interplay between

the effective magnetic flux and the on-site gain/loss. When
the flux is zero, i.e., ϕ ¼ 0, we observe ja ¼ jb ¼ 0 (see
Fig. 3g), which shows no antichiral currents. Therefore,
there is no skin effect in this case (antichiral currents for
ϕ ¼ π are also zero, seeing Supplementary Note 6).
We also obtain the band structures using the standard

time-resolved band structure spectroscopy28. To obtain
the band structures, we directly obtain the drop-port
transmission spectrum from ring A ðsAoutÞ after injecting
the laser field in ring A. Then we break the transmission
spectrum into different time slices with the time window
T ¼ 2π=Ω, which is the one round-trip time of ring A
or B. By stacking up these time slices as a function of
the frequency detuning, we obtain the transmission
TA

outðΔω; kÞ, which is the band structure. Figures 3f and
3h show the measured band structures for ϕ ¼ 0:5π and
ϕ ¼ 0, respectively. The measured band structures exhibit
the projection of whole band structure shown in Fig. 2a, d
on the leg a (see Supplementary Note 3). (Projection of
band structure on leg b can also be obtained if we inject
the laser into ring B and get the drop-port transmission
spectrum from the ring B.) The measured results show
agreement with these of numerical simulations based on
the actual passive system (refer to Supplementary Note 4).
Besides the antichiral currents, the topological winding

of the energy bands can provide another evidence of the
skin effect. For a fixed k, the transmission TA

outðΔωÞ exhi-
bits a two-peak Lorentzian function of Δω (see Fig. 3f, h),
and has the form (refer to Supplementary Note 3)

TA
outðΔωÞ ¼

R1

½ReðE1Þ � Δω�2 þ ½ImðE1Þ�2

þ R2

½ReðE2Þ � Δω�2 þ ½ImðE2Þ�2
ð9Þ

where R1 and R2 are fitting constants. We can then obtain
the real and imaginary parts of eigenenergies, ReðEÞ and
ImðEÞ, from the measured projected band structures by
fitting the measured TA

outðΔωÞ with Eq. (9). Using this
method, we extract the trace of ReðEÞ and ImðEÞ in the
whole first Brillouin zone k 2 ð0; 2π�, and plot ReðEÞ and
ImðEÞ in the complex energy plane to character the point-
gap topology. In Fig. 4c, e, we showcase the experimen-
tally obtained real ½ReðEÞ� and imaginary part ½ImðEÞ� of
the band structures for ϕ ¼ 0:5π, where the measured
and fitted TA

outðΔωÞ as a function of Δω at k ¼ π are
shown in Fig. 4g. We plot the experimentally measured
and theoretically simulated eigenenergies in the complex
energy plane for the entire first Brillouin zone in Fig. 4a.
One can see that Re Eð Þ; ImðEÞ form two closed loops with
the corresponding winding number ± 1 from oppositely
circulated trends of ½ReðEÞ; ImðEÞ� versus k from 0 to 2π,
indicating the existence of the skin effect if an open
boundary condition is applied to the synthetic lattice.
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The existence of the skin effect is the result of the interplay
between the magnetic flux and the on-site gain/loss. As the
comparison, for the Hermitian case with γ ¼ 0 and all
other parameters being the same, we use the same method
to obtain the Re Eð Þ; ImðEÞ and plot results in Fig. 4 for the
comparison. One can see that the trend of eigenenergy
versus k in the complex energy plane form lines (see
Fig. 4b), presenting the absence of the skin effect.
We can further introduce long-range couplings in the

non-Hermitian Hall ladder lattice and observe antichiral
currents with higher winding numbers. As an example, we

consider adding next-nearest-neighbor (NNN) couplings
with the coupling strength v0 on the leg a, as shown in
Fig. 5a. To experimentally achieve this lattice, we replace
the phase modulation of EOM1 by WAðtÞ ¼ g cosðΩt þ
ϕaÞ þ g 0 cosð2Ωt þ ϕ0

aÞ, with g 0 and ϕ0
a being the NNN

modulation amplitude and phase. We show the theore-
tical band structures, energy spectra under periodic and
open boundary conditions, antichiral currents, and dis-
tribution of all the eigenstates under open boundary
conditions in Fig. 5b–e. From Fig. 5c, we see the energy
spectra under the periodic boundary condition form
several loops, which are different from those under the
open boundary condition, thus indicating the existence of
the skin effect. We also show the calculated winding
number w in different loops in Fig. 5c, and see that higher
winding number of w ¼ �2 can exist near ReðEÞ ¼ 0.
Comparing Fig. 5d with Fig. 5e, we see that the direction
of skin effect is consistent with the direction of antichiral
currents. The amplitude of total currents ðJ ¼ Ja þ JbÞ
according to w ¼ �2 is twice as those for these eigen-
energies with w ¼ ± 1 (see Fig. 5d). In experiments, we
use the same experimental method to obtain the steady-
state mode distributions on the two legs (Pa;Pb), as shown
in Fig. 5f. The steady-state currents ja; jb then can be
obtained using Eq. (8), as shown in Fig. 5h. An example of
steady-state mode distributions Pa;Pb at Δω ¼ 0 (white
lines in Fig. 5f) are shown in Fig. 5g. We see that Pa; Pb

both have large occupations in higher-frequency modes,
indicating the positive antichiral currents along þx̂
direction (black dashed line in Fig. 5h). We also measure
the projected band structure in Fig. 5i, which agrees with
the theoretical result from tight-binding model analysis in
Fig. 5b. These experimental results of steady-state mode
distributions and antichiral currents match well with the
numerical simulations (see Fig. S13 in the Supplementary
Note 8). We also study other cases with NNN couplings
in Supplementary Note 8. Our model may be further
extended to higher dimensions by adding long-range
couplings that are multiple of the FSR. In such cases, the
synthetic frequency dimension can be folded to 2D/3D
synthetic lattices25,31,35, which might bring opportunities
for studying the higher-dimensional non-Hermitian phy-
sics with the skin effect in the optical regime.

Discussion
Before the conclusion, we provide several side notes.

The observed antichiral currents are also related to the
persistent bulk currents70 in non-Hermitian systems. In
particular, any one of the three phenomena, i.e., antichiral
currents, skin effect, and the winding number, is the
sufficient and necessary condition of the other two70. In
other words, the non-zero antichiral currents related to
each eigenenergy in our two-leg model demonstrate the
existence of nonvanishing bulk currents, which can
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therefore predict the existence of the skin effect for a
specific eigenenergy.
The mechanism leading to the observed non-Hermitian

antichiral currents points out the possibility for realizing
the skin effect, bipolar skin effect and hybrid second-order
skin-topological effect in a gain-loss photonic system
without asymmetric couplings56,63–65, which possesses its
advantage in understanding the physics of the skin effect
from the interplay between the effective magnetic flux
and on-site gain/loss. Such mechanism though is
demonstrated in the synthetic frequency lattice here, may
also be achieved in other photonic platforms using dif-
ferent degrees of freedom of light7,26,27, or in different
fields such as optomechanics77 and cold atoms5. More-
over, the non-Hermitian Hall ladder here takes the
advantage of the tunability provided by synthetic dimen-
sions to showcases the way for manipulating the skin
effect and steering the unidirectional flow of light. Such
flexibility may also be implemented in future studies of

different non-Hermitian models with asymmetric cou-
plings such as the Hatano-Nelson56,57 and non-Hermitian
Su–Schrieffer–Heeger models59–61 using the synthetic
frequency dimension. Although this frequency lattice in
our system is infinite, we can create an open boundary
condition using auxiliary rings30 to observe the skin effect
(see Supplementary Note 7 for detailed discussion). The
antichiral currents with edge currents in the same direc-
tion on both legs are fundamentally different from chiral
currents and exist obviously in quasi-1D lattice (detailed
discussion can be found in Supplementary Note 9), and
might find potential applications in robust photonic
devices with unidirectional frequency conversions and
even selective amplifications at higher/lower frequency
modes if average loss is tuned into gain.
To conclude, we have theoretically studied and experi-

mentally observed non-Hermitian antichiral currents
from the broken chirality38 in a tunable Hall ladder with
the synthetic frequency dimension in the optical regime.
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Such antichiral currents, exhibiting the co-propagating
feature on two legs, can be used to predict the corre-
sponding non-Hermitian skin effect, which is also con-
firmed by measuring the topological windings of the
energy bands. Note recent experimental works on the
interplay between topology and non-Hermiticity in dif-
ferent systems78,79, our work operates in a synthetic space
so light gets unidirectional frequency conversion in both
rings. We further consider the addition of NNN couplings
and study non-Hermitian antichiral currents therein. Our
work therefore extends anomalous topological phenom-
ena into non-Hermitian regime, which is different from
Hermitian antichiral states in previous works19–22 and
hence holds promise in further explorations of
exotic high-dimensional non-Hermitian topology with the
synthetic space.

Materials and methods
Experimental setup
The schematic of our experimental setup is shown in

Fig. 6. A continuous-wave laser with a 200 kHz linewidth
centered at 1550.92 nm is split to two parts by a 50 : 50
fiber coupler. One part of the laser field is injected into
ring A through a 2 ´ 2 fiber coupler with a coupling ratio
99 : 1. The other part of the laser field is used to interfere
with the drop-port output fields of the two fiber ring
resonators for the mode distributions and band structure
measurement. The laser frequency can be finely scanned
over 5 GHz by applying a ramp signal on the frequency
module. Two identical lithium niobate electro-optic phase
modulators (EOMs) with 10 GHz bandwidth are driven by
two arbitrary waveform generators (200MHz bandwidth).

The semiconductor optical amplifier (SOA) is used to
compensate for the loss in each ring to obtain a high-
quality factor. Two dense-wavelength division multi-
plexing (DWDM) band-pass filters (Channel 33, center
wavelength 1550.92 nm) are utilized to effectively sup-
press the amplified spontaneous emission noise emanat-
ing from the SOA. The polarization controllers in both
rings ensure that the polarization orientation of the laser
in rings matches the principle axis of EOMs. An addi-
tional electro-optic amplitude modulator in the ring B
adds an additional loss. Both fiber rings are coupled to
through- and drop-ports to enable an independent cali-
bration of the FSR of single ring. The two drop-port
signals are directly sent to two fast InGaAs photodiodes (
850 to 1650 nm with 10 GHz bandwidth) after optical
amplification by an erbium-doped optical fiber amplifier
(with a maximum gain of 12 dB) and then are sent to the
oscilloscope (5 G samples/s with 1 GHz bandwidth) for
measurements.
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